LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – **MATHEMATICS**

FIFTH SEMESTER – **NOVEMBER 2022**

17/18UMT5MC01 – REAL ANALYSIS

Date: 23-11-2022 Dept. No. Time: 09:00 AM - 12:00 NOON

PART - A

 $(10 \times 2 = 20)$

 $(5 \times 8 = 40)$

Max.: 100 Marks

1. Define countable, give an example.

- 2. State Archimedean property.
- 3. Define closed set.

Answer ALL Questions

- 4. Define accumulation point.
- 5. Give an example to show every continuous function need not be uniformly continuous.
- 6. State uniform continuity theorem.
- 7. Define differentiability at a point.
- 8. Define local maximum, give an example.
- 9. Define total variation.
- 10. Prove that every function defined and monotonic on a bounded closed interval is of bounded variation on that interval.

PART - B

Answer any FIVE Questions

- 11. Prove that every subset of a countable set is countable.
- 12. Prove that e is irrational.
- 13. Let $M = R^n$ and let $x = (x_1, x_2 \dots x_n), y = (y_1, y_2 \dots y_n)$ and $z = (z_1, z_2 \dots z_n) \in R^n$. Define $d(x, y) = \left\{\sum_{k=1}^n (x_k - y_k)^2\right\}^{\frac{1}{2}}$. Prove that (M, d) is a metric space.
- 14. State and prove Lagrange's mean value theorem.
- 15. If f and g are both continuous at a point $x_0 \in X$, then prove that f + g, fg and kf are continuous a x_0 , where k is a constant.
- 16. Prove that every convergent sequence is a Cauchy sequence.
- 17. Let (X, d) be a metric space. Then prove that the following (i) the union of an arbitrary collection of open sets in X is open in X (ii) the intersection of an arbitrary collection of closed sets in X.
- 18. Show that every compact subset of a metric space is complete.

PART - C	
Answer any TWO Questions	$(2 \times 20 = 40)$
19. Prove that every bounded and infinite subset of R has atleast one accumulation point	
20. (a) State and prove Cauchy Schwartz inequality.	
(b) Explain about compact set and complete metric space.	(12+8)
21. (a) State and prove Taylor's Theorem.	
(b) State and prove Rolle's theorem.	(12+8)
22. Let f be of bounded variation on $[a, b]$ and $c \in (a, b)$. Prove that f is of bounded	
variation on $[a, c]$ as well as on $[c, b]$ and $V_f[a, b] = V_f[a, c] + V_f[c, b]$.	

@@@@@@@